Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface.

نویسنده

  • Derek Peak
چکیده

Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO4(2-) and selenite (SeO3(2-) on hydrous aluminum oxide (HAO) over a wide range of reaction pH using extended X-ray absorption fine structure (EXAFS) spectroscopy. Additionally, selenate adsorption on corundum (alpha-Al2O3) was studied to determine if adsorption mechanisms change as the aluminum oxide surface structure changes. The overall findings were that selenite forms a mixture of outer-sphere and inner-sphere bidentate-binuclear (corner-sharing) surface complexes on HAO, selenate forms primarily outer-sphere surface complexes on HAO, and on corundum selenate forms outer-sphere surface complexes at pH 3.5 but inner-sphere monodentate surface complexes at pH 4.5 and above. It is possible that the lack of inner-sphere complex formation at pH 3.5 is caused by changes in the corundum surface at low pH or secondary precipitate formation. The results are consistent with a structure-based reactivity for metal oxides, wherein hydrous metal oxides form outer-sphere complexes with sulfate and selenate, but inner-sphere monodentate surface complexes are formed between sulfate and selenate and alpha-Me2O3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption mechanism of selenate and selenite on the binary oxide systems.

Removal of selenium oxyanions by the binary oxide systems, Al- or Fe-oxides mixed with X-ray noncrystalline SiO(2), was previously not well understood. This study evaluates the adsorption capacity and kinetics of selenium oxyanions by different metal hydroxides onto SiO(2), and uses X-ray absorption spectroscopy (XAS) to assess the interaction between selenium oxyanions and the sorbents at pH 5...

متن کامل

Selenium adsorption to aluminum-based water treatment residuals.

Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected ...

متن کامل

Arsenate adsorption mechanisms at the allophane-water interface.

We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As-(V)]0 from 50 to 1000 microM (i.e., Langmuir type adsorptio...

متن کامل

Adsorption Mechanisms and Transport Behavior between Selenate and Selenite on Different Sorbents

Adsorption of different oxidation species of selenium (Se), selenate (SeO4) and selenite (SeO3), with varying pHs (2-10) and ionic strengths (I=0.01 M, 0.1 M and 1.0 M NaNO3) was measured on quartz, aluminum oxide, and synthetic iron oxide (ferrihydrite) using batch reactors to obtain a more detailed understanding of the adsorption mechanisms (e.g., innerand outer-sphere complex). In addition t...

متن کامل

Selenium Removal from Agricultural Drainage Water: Lab Scale Studies

This report is an evaluation of the selenium removal from agricultural drainage water and synthetic solutions contaminated with high amounts of selenium. Batch and kinetic studies were conducted on the removal of selenium and the effectiveness of various remediation materials was determined. The agricultural drainage water samples were obtained from San Joaquin Valley and provided by Department...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 303 2  شماره 

صفحات  -

تاریخ انتشار 2006